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1 Introduction

Since the beginning of my PhD, I worked on optimal transport and its applications to statistics. I
started working on these fields through a biological application: the analysis of flow cytometry data.
In this document, the focus is on optimal transport as a tool for statistical inference. However, the
research I will present has been motivated by applied biological questions.

2 Optimal transport

Informally stated, the optimal transport problem is to find the most efficient way to move a pile of sand
from an area X toward an area Y. This problem dates back to G.Monge in his Mémoire sur la Théorie
des Déblais et des Remblais in 1781. In this document, we will work with a more modern formulation
that L.Kantorovich introduced in [11].

For µ and ν two probability distributions on Rd, we denote by Π(µ, ν) the set of probability distri-
butions with marginals µ and ν. With these notations, the optimal transport problem of Kantorovich
reads

T0(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

‖x− y‖2dπ(x, y). (2.1)

We refer to the quantity T0(µ, ν) as the optimal transport cost. Due to the applied context of my
research, I often work with discrete measures such as µ =

∑n
i=1 aiδxi and ν =

∑m
j=1 bjδyj . Here, a

and b denote probability vectors of Rn and Rm, while {x1, . . . , xn} and {y1, . . . , ym} are the respective
supports of µ and ν. In this case, the optimal transport problem (2.1) reads

T0(µ, ν) = inf
π∈Π(a,b)

∑
1≤i≤n,
1≤j≤m

‖xi − yj‖2πi,j . (2.2)

In this discrete framework, the set of constraints Π(µ, ν) of Problem (2.1) turns into the set of coupling
matrices between a and b, that we denote by Π(a, b) = {π ∈ Rn×m+ | π1m = a and πT 1n = b}.

From a theoretical point of view, a natural question is the well-posedness of problem (2.1). On the
applied side, we are searching some efficient algorithms to solve problem (2.2).
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These two questions were already well understood when I started working on these subjects. For the
well-posedness of problem (2.1), its structure ensures the existence of a solution π∗ to this minimiza-
tion problem. The uniqueness of this solution π∗ is a more involved question and requires additional
assumptions. For instance, Y.Brenier proved in [2], that if µ is absolutely continuous with respect to
the Lebesgue measure, then the solution π∗ to the Kantorovich problem is unique. However, when both
distributions are discrete, we can propose some elementary counter-examples to the uniqueness of a
solution to the transport problem (2.2).

On the applied side, problem (2.2) is a linear optimization problem. Therefore, when both distribu-
tions are discrete with cardinal n, there is no algorithm to solve problem (2.2) with less than O(n3 log(n))
operations [13, 12, 5].

To mitigate the computational cost of optimal transport, a recent technique introduced in [5] relies
of the addition of a regularizing term to the optimal transport problem. In [5], M.Cuturi regularized
the optimal transport thanks to a Kullback-Leibler penalization. We denote by KL this divergence

and remind that for π ∈ Π(µ, ν), it is defined by KL(π|µ ⊗ ν) =
∫

log
(

dπ
dµ⊗ν (x, y)

)
dπ(x, y) if π is

absolutely continuous with respect to µ ⊗ ν, and KL(π|µ ⊗ ν) = +∞ otherwise. Thus, for µ and
ν two probability distributions with compact supports, the entropic optimal transport problem with
regularization parameter λ ≥ 0 is

Tλ(µ, ν) := min
π∈Π(µ,ν)

∫
X×Y

‖x− y‖2dπ(x, y) + λKL(π|µ⊗ ν). (2.3)

We refer to Tλ(µ, ν) as the regularized optimal transport cost. The regularizing term provides a com-
putational advantage with respect to the unregularized optimal transport problem. In the case µ and
ν have discrete supports of size ν, Sinkhorn algorithm [15] allows to compute Tλ(µ, ν) in O(n2 log(n))
operations. Moreover, the strong convexity of the Kullback-Leibler divergence ensures the uniqueness
of a solution π∗λ to the regularized transport problem (2.3).

Regularized [4] or not [14], the optimal transport problem admits a dual formulation. That is,
substituting the constraint set Π(µ, ν) by dual variables (ϕ,ψ) ∈ L∞(µ)× L∞(ν) allows to rewrite the
optimal transport problem as a maximization problem. Thus, for λ ≥ 0, the optimal transport cost
between µ and ν reads

Tλ(µ, ν) = max
ϕ∈L∞(µ),
ψ∈L∞(ν)

∫
X
ϕ(x)dx+

∫
Y
ψ(y)dy −

∫
X×Y

mλ(ϕ(x) + ψ(y)− ‖x− y‖2)dµ(x)dν(y), (2.4)

where mλ is a constraint function defined as follows.

For every t ∈ R, mλ(t) =

{
+∞1t>0 if λ = 0

λ(e
t
λ − 1) otherwise.

Numerical schemes, such as the Sinkhorn algorithm, are based on this dual problem. Moreover, statistical
properties of the transport cost are established thanks to this dual formulation.

3 A statistical point of view

In this section, I present two questions I studied during my PhD.
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3.1 Estimation of an optimal transport cost

In statistics, a probability distributions µ on Rd is only accessible through its samples X1, . . . , Xn ∼ µ.
Then, the purpose is to derive some properties of µ based on the available samples. In optimal transport,
two probability distributions are compared. We will thus assume to have access to a second series of
observations Y1, . . . Yn, distributed with respect to an other probability measure ν. I studied the esti-
mation of the optimal transport cost T0(µ, ν) thanks to the observations from µ and ν. An existing, and
natural strategy to estimate T0(µ, ν) is to substitute µ and ν by their empirical versions, respectively
defined by µ̂n = 1

n

∑n
i=1 δXi and ν̂n = 1

n

∑n
j=1 δYj . Thus, the estimator of the optimal transport cost

between µ and ν is defined by T0(µ̂n, ν̂n).

In my previous work, I studied an other class of estimators defined thanks to regularized costs. For
instance, I analyzed the estimation error of the family of estimators (Tλ(µ̂n, ν̂n))λ≥0, with Tλ defined
by problem (2.3). The purpose was to derive rates of convergence of Tλ(µ̂n, ν̂n) toward T0(µ, ν). To
this end, I work under the assumption that both measures µ and ν have compact supports. I showed
that an appropriate choice of the regularization parameter allows to reach the following non-asymptotic
result. If n i.i.d. observations are available both for µ and ν, then,

E [|Tλn(µ̂n, ν̂n)− T0(µ, ν)|] ≤ Cn−2/d log(n). (3.1)

This result derives from a decomposition of the error into an approximation term |Tλ(µ, ν)−T0(µ, ν)|,
and an estimation term |Tλ(µ, ν) − Tλ(µ̂n, ν̂n)|. Regarding the approximation term, I relied on error
bounds established in [6]. In this article, Genevay et al. proved that |Tλ(µ, ν) − T0(µ, ν)| decreases
with λ at the pace O(λ log(λ)). For the estimation term, I showed that it could be controlled by the
supremum of an empirical process already studied in [4]. My study resulted on the following inequality,

E [|Tλ(µ, ν)− Tλ(µ̂n, ν̂n)|] ≤ Cn−2/d, (3.2)

with a constant C independent of λ. This upper bound (3.2) allows for practical choice of regularizing
parameter λn that depends on the number of observations n and their dimension d. From this choice
of regularizing parameter, I could derive inequality (3.1).

3.2 Fitting a model with an optimal transport criterion

I came to the estimation of an optimal transport cost while fitting a model with an optimal transport
criterion. In my PhD, I focused on mixture models parameterized by weights vector. However, under
appropriate assumptions, these results extend to other statistical models. Let us assume to have a
probability model {µθ | θ ∈ Θ} where Θ denotes the parameter space. Then, given an unknown
probability distribution ν, the purpose is to find a good approximation of ν inside {µθ | θ ∈ Θ}. More
precisely, we denote by µθ∗ the closest distribution, of the model, to ν and define it as follows.

θ∗ := arg min
θ∈Θ

T0(µθ, ν). (3.3)

We notice that if ν belongs to the model {µθ | θ ∈ Θ}, and if this model is identifiable, then µ∗θ = ν.
Let me also point out that problem (3.3) requires the measure ν to be known.

In the statistical framework where I work, the probability measure ν is only accessible through
samples Y1, . . . , Yn ∼ ν. Therefore we substitute ν by its empirical version ν̂n. Then, two arguments
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motivate the use of a regularized cost Tλ instead of T0 in Problem (3.3). First, the regularized transport
cost features an algorithmic improvement over the standard optimal transport problem. Second, the
well-posedness of the function θ 7→ T0(µθ, ν̂n) is not ensured if the measures µθ are not absolutely
continuous with respect to the Lebesgue measure. Therefore, I preferred to rely on the entropic optimal
transport cost Tλ to compare ν̂n to the measures µθ. Hence, the family of estimators (θ̂λ)λ>0 I studied
was defined thanks to the regularized optimal transport cost as follows.

For λ > 0, θ̂λ := arg min
θ∈Θ

Tλ(µθ, ν̂n). (3.4)

Building on similar techniques as when estimating the optimal transport cost, I could derive non-
asymptotic rates of convergence of θ̂λ toward θ∗. Under the assumption that there exists a bounded set
X such that every µθ has its support in X , it holds true that

R(θ̂λn) := E
[
T0(µθ̂λn

, ν)− T0(µθ∗ , ν)
]
≤ Cn−2/d log(n). (3.5)

As θ∗ is defined as a minimizer of θ 7→ T0(µθ, ν), the quantity R(θ̂λ) is always positive or zeros. Again,
the rate of convergence established in equation (3.5) is due to a specific choice of the regularizing
parameter. Computing the minimizer of an optimal transport criterion, such as in equation (3.4), is
also a question I addressed for the specific case of discrete mixture models.

4 Perspectives

My research could pursue on several directions. While I focused on non-asymptotic results in my pre-
vious works, I would be interested to study asymptotic properties of regularized transport cost. For
instance, central limit theorems have been proven in [1] for regularized optimal transport costs on dis-
crete spaces. Exploiting recent techniques applied in [10], it might be possible to establish central limit
theorems for regularized optimal transport costs in a more general setting. In the same line of research, I
would be motivated to study the asymptotic normality of estimators defined as minimum of regularized
optimal transport criterion, such as in equation (3.4).

An other possibility of research could be to develop multivariate goodness-of-fit tests based on en-
tropic optimal transport. Such tests have already been studied in [9], when exploiting unregularized
transport costs. However, I do not know similar results when substituting the classic transport cost by
its entropic regularized version.

I could also start working on the recent topic of distributional regression based on optimal transport.
In this area of research, the regression function maps a probability distribution to an other probabil-
ity distribution. In works such as [7], the estimation of the regression map is based on the Fréchet
mean of probability distributions. I would be interested to apply entropic optimal transport barycenter
techniques, recently proposed in [3], to the distributional regression problem. Indeed, the regularized
strategy of [3] ensures the well posedness of the Fréchet mean problem, and allows the application of
efficient algorithms. In the same direction, it would be possible to exploit these regularized transport
barycenters to extend autoregression models already studied in [8].

Finally, I am ready to work on other questions related to the statistical properties of entropic optimal
transport. I would also be interested to work on other topics in statistic, or optimal transport to improve
my knowledge of these fields.
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